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Abstract. Coulomb form factors of C4 transitions in even-even N = Z sd-shell nuclei (20Ne, 24Mg, 28Si and
32S) are discussed taking into account higher-energy configurations outside the sd-shell model space which
are called core polarization effects. Higher configurations are taken into account through a microscopic
theory, which allows particle-hole excitations from the 1s and 1p shells core orbits and also from the
2s1d-shell orbits to the higher allowed orbits with excitations up to 4�ω. The effect of core polarization
is found essential in both the transition strengths and momentum transfer dependence of form factors,
and gives a remarkably good agreement with the measured data with no adjustable parameters. The
calculations are based on the Wildenthal interaction for the sd-shell model space and on the modified
surface delta interaction (MSDI) for the core polarization effects.

PACS. 25.30.Dh Inelastic electron scattering to specific states – 21.60.Cs Shell model – 27.30.+t 20 ≤
A ≤ 38

Introduction

Comparisons between calculated and measured longitudi-
nal electron scattering form factors have long been used as
stringent tests of models of nuclear structure. Shell model
within a restricted model space succeeded in describing
static properties of nuclei, when effective charges are used.
The Coulomb form factors have been discussed for the
stable sd-shell nuclei using sd-shell wave functions with
phenomenological effective charges [1]. The model space
wave functions defined by the orbits in the sd-shell region
cannot describe the photon point data and the electron
scattering form factors for the non-zero momentum
transfer (q) values without introducing effective charges.
However, the introduction of effective charges may bring
the calculated transition strengths, which are defined
at the photon point, closer to the measured values, but
the non-zero momentum transfer values might deviate
appreciably from the measured values. A microscopic
model has been proposed [2] to include effects from
outside the model space, which is called core polarization
effects. Coulomb form factors of E4 transitions in the
sd-shell nuclei were discussed taking into account core
polarization effects using self-consistent Hartree-Fock +
random phase approximation calculations, which gave a
good agreement with experimental form factors [2]. The
effect of core polarization was found to be essential [3] in
describing the form factors of 12C and 13C. The first-order
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core polarization effects were incorporated with the p-shell
wave functions by Sato et al. [4], where the effects greatly
improved the agreement with the experimental data. Re-
stricted 1p-shell models were found [5] to give just 45% of
the total observed C2 transition strength for 10B and only
a 10% improvement was realized by expanding the shell
model space to include 2�ω configurations. The inclusion
of even higher-excited configuration by means of core
polarization calculation [5] was essential to remove the
remaining short fall. First-order core polarization effects
were studied in pion single-charge exchange reactions on
15N and 13C [6], where the cross-section were moderately
affected by core polarization.

In the present work, the C4 Coulomb form factors are
studied for the even-even N = Z nuclei (20Ne, 24Mg, 28Si
and 32S), in the framework of the sd-shell model. We in-
clude higher-energy configurations as a first-order core po-
larization. Transitions from the core 1s and 1p orbits and
also from the 2s1d-shell orbits to all the higher allowed
orbits with excitations up to 4�ω are taking into account.
In the present analysis, we do not introduce any state-
dependent parameters such as effective charges, which
were introduced in the previous investigation of electron
scattering form factors in this region. For the sd-shell
model space wave functions, we adopt the interaction of
Wildenthal [7]. For the core polarization calculations, the
modified surface delta interaction (MSDI) [8] is used as
a residual interaction. The single-particle wave functions
are those of the harmonic-oscillator (HO) potential with
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size parameter b = 1.869 fm for 20Ne, b = 1.813 fm for
24Mg, b = 1.827 fm for 28Si and b = 1.881 fm for 32S so
as to reproduce the root mean square (rms) charge radii
of these nuclei [1].

Theory

The core polarization effect on the form factors is based
on a microscopic theory, which combines shell model wave
functions and configurations with higher energy as first-
order perturbations; these are called core polarization ef-
fects. The reduced matrix elements of the electron scat-
tering operator TΛ is expressed in terms of the residual
interaction Vres as follows:〈
Γf |||T̂Λ|||Γi

〉
=

〈
Γf |||T̂Λ|||Γi

〉
MS

+
〈
Γf |||δT̂Λ|||Γi

〉
HC

,

(1)
where the states |Γi〉 and |Γf〉 are described by the model
space wave functions. Greek symbols are used to denote
quantum numbers in coordinate space and isospace, i.e.
Γi ≡ JiTi, Γf ≡ JfTf and Λ ≡ JT .

The model space (MS) matrix element is expressed
as the sum of the product of the elements of the one-
body density matrix (OBDM) χΛ

ΓfΓi
(α, β) times the single-

particle matrix elements, and is given by [1]

〈Γf |||TΛ|||Γi〉MS =
∑
α,β

χΛ
ΓfΓi

(α, β)〈α|||TΛ|||β〉, (2)

where α and β label single-particle states (isospin is in-
cluded) for the model space.

Similarly, the higher-energy configurations (HC) ma-
trix element is written as〈

Γf |||δT̂Λ|||Γi
〉
HC

=
∑
α,β

χΛ
ΓfΓi

(α, β)
〈
α|||δT̂Λ|||β

〉
. (3)

According to the first-order perturbation theory, the
higher-energy configurations single-particle matrix ele-
ment is given by [8]〈

α|||δT̂Λ|||β
〉

= 〈α |||T̂Λ
Q

Ei −H0
Vres|||β〉

+ 〈α |||Vres Q

Ef −H0
T̂Λ|||β〉 . (4)

The operator Q is the projection operator onto the
space outside the model space. For the residual interac-
tion, Vres, we adopt the MSDI [8]. Ei and Ef are the en-
ergies of the initial and final states, respectively. Equa-
tion (4) is written as [8]

〈α|||δTΛ|||β〉 =
∑

α1α2Γ

(−1)β+α2+Γ

eβ − eα − eα1 + eα2

(2Γ + 1)

×
{
α β Λ
α2 α1 Γ

}√
(1 + δα1α)(1 + δα2β)

×〈αα1|Vres|βα2〉Γ 〈α2||| TΛ|||α1〉
+ terms with α1 and α2 exchanged with

an overall minus sign, (5)

where the index α1 runs over particle states and α2 over
hole states and e is the single-particle energy. The core po-
larization parts are calculated allowing particle-hole exci-
tations from the 1s-, 1p- and 2s1d-shell orbits into higher
orbits. These excitations are taken up to 4�ω.

The single-particle matrix element reduced in both
spin and isospin, is written in terms of the single-particle
matrix element reduced in spin only [8]

〈α2|||TΛ|||α1〉 =

√
2T + 1

2

∑
tz

IT (tz)〈α2||TJtz
||α1〉 (6)

with

IT (tz) =
{

1 , for T = 0 ,
(−1)1/2−tz , for T = 1 , (7)

where tz = 1/2 for a proton and −1/2 for a neutron.
The reduced single-particle matrix element of the

Coulomb operator is given by [9]

〈α2||TΛ||α1〉 =
∫ ∞

0

dr r2jJ(qr)

×〈α2||YJ ||α1〉Rn1�1(r)Rn2�2(r) ,
(8)

where jJ(qr) is the spherical Bessel function and Rn�(r)
is the single-particle radial wave function.

Electron scattering form factor involving angular mo-
mentum J and momentum transfer q, between the initial
and final nuclear shell model states of spin Ji,f and isospin
Ti,f are [10]

|FJ(q)|2 =
4π

Z2(2Ji + 1)

∣∣∣∣∣
∑

T=0,1

(
Tf T Ti
−Tz 0 Tz

)

×〈JfTf |||TJT |||JiTi〉
∣∣∣∣∣
2

F 2
cm(q)F 2

fs(q) , (9)

where Tz is the projection of the initial and final states
and is given by Tz = (Z − N)/2. The nucleon finite-size
(fs) form factor is Ffs(q) = exp(−0.43q2/4) and Fcm(q) =
exp(q2b2/4A) is the correction for the lack of translational
invariance in the shell model. A is the mass number, and
b is the harmonic-oscillator size parameter.

The single-particle energies are calculated according
to [8]

enlj = (2n+ l − 1/2)�ω

+

{
− 1

2 (l + 1)〈f(r)〉nl , for j = l − 1/2 ,
1
2 l〈f(r)〉nl , for j = l + 1/2 ,

(10)

with 〈f(r)〉nl ≈ −20A−2/3 and �ω = 45A−1/3 − 25A−2/3.
The electric transition strength is given by [11]

B (CJ, k) =
Z2

4π

[
(2J + 1) !!

kJ

]2
F 2

J (k) , (11)

where k = Ex/�c.
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Table 1. Theoretical values of the reduced transition probabilities B(C4 ↑) (in units of 103 e2 · fm8) for the transition 0+ to
4+ in comparison with experimental values.

Nucleus Ex (MeV) 0�ω (0+2)�ω (0+2+4)�ω sd Expt.
(ep + en = 2.0 e)

20Ne 4.248 11.50 34.10 44.25 46.2 38 ± 8(a)

24Mg 6.010 9.86 30.10 39.31 39.5 43 ± 6(b)

28Si 4.617 6.93 21.83 28.7 27.7 27.5 ± 5(c)

32S 4.459 12.50 39.91 52.8 49.9 49.9(d)

(a) Ref. [14].

(b) Ref. [16].

(c) Ref. [18].

(d) Effective charge model [1].

1 Results and discussion

The core polarization effects are calculated with the MSDI
as a residual interaction. The parameters of the MSDI are
denoted by AT , B and C [8], where T indicates the isospin
(0,1). An empirical estimate of these parameters can be
obtained by comparing the calculated B(C4) values for
even-even sd-shell nuclei obtained from the empirical effec-
tive charges and those obtained from the core polarization
calculations. Based on several experimentally measured
transition strengths, the empirical isoscalar C4 effective
charge was found to be equal to ep +en = (2.0±0.2)e [12].
Using this value for the effective charge, the average
value for the strength parameters is found to be equal to
A0 = A1 = B = 0.42 MeV and C = 0. Using this value for
the strength parameters, the calculated B(C4) values are
very close to the experimental values as given in table 1.

In all of the following diagrams (see fig. 1), the dashed
lines give the results obtained using the sd-shell wave func-
tions of Wildenthal interaction [7]. The results of the core
polarization effects are shown by the cross symbols. The
results including core polarization are shown by the solid
lines. For comparisons, we include the results of ref. [1],
where the core polarization effects were calculated by as-
suming a Tassie [13] shape for the core polarization tran-
sition density. These results are displayed in the following
diagrams by the dotted lines for the core polarization con-
tributions and by the dash-dotted lines for the sum of the
model space and core polarization contributions.

20Ne nucleus (4.248 MeV, JπT = 4+0) state

The sd-shell model space (0�ω) calculation predicts
the value 11.5 × 103 e2 · fm8 for the B(C4) transition
strength when bare charges are used. This value is a
factor of more than three lower than the measured value
(38 ± 8) × 103 e2 · fm8 [14] as given in table 1. The C4
form factor according to this model is shown in fig. 1(a)
as a dashed curve, where it underpredicts the data. This
model cannot reproduce both the transition strength
(defined at the photon point) and the non-zero q values
when bare charges are used. Using a q-independent

effective charge (2.0 e) will enhance the photon point and
the entire plot by a constant factor and cannot describe
the form factor for the different q regions. The sd-shell
component represents 26% of the total wave function.
When core polarization is included, the particle-hole (ph)
component represents 51% with 2�ω excitations. The
4�ω contribution is 23% of the total wave function. The
core polarization contribution (2+4) �ω represents 74%
of the total contribution. This contribution is shown by
the cross symbols. The inclusion of this contribution to
the model space contribution enhances the form factor
for q � 2.0 fm−1 and describes the experimental data of
ref. [15] very well for all q values as shown by the solid line
in fig. 1(a). The core polarization contribution calculated
in this work according to the perturbation theory (cross
symbols) gives almost an identical result as that obtained
by the Tassie shape for the transition density [1] (dotted
line) for q � 2.0 fm−1. The form factor in this case is
given by the dash-dotted line.

24Mg nucleus (6.01 MeV, JπT = 4+0) state

The predicted B(C4) value from the sd-shell model space
calculation with bare charges is 9.86× 103 e2 · fm8, which
is a factor of more than four lower than the measured
value (43±6)×103 e2 · fm8 [16]. This discrepancy between
the experimental and theoretical B(C4) values is reflected
in the form factor, as shown in fig. 1(b) by the dashed
curve, where the data is underestimated for q � 2.0 fm−1.
The inclusion of higher-excited configurations greatly
modifies the form factor and shows an excellent agree-
ment with the experimental data of refs. [16,17]. The
sd-shell component represents 25% of the total wave
function. When core polarization is included, the ph
component represents 52% with 2�ω excitations. The
4�ω contribution is 23% of the total wave function. The
core polarization contribution (2+4) �ω represents 75%
of the total contribution. This enhancement of the form
factor upon the sd-shell model form factor was also
shown by the projected Hartree-Fock calculation [2],
where the numerous small elements beyond the sd-shell
were important in giving quality of fit to the data.
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Fig. 1. Longitudinal C4 form factors for the transitions to the 4+
1 state in 20Ne (a), the 4+

2 state in 24Mg (b), the 4+
1 state

in 28Si (c) and the 4+
1 state in 32S (d). The dashed lines represents sd-shell model calculations. Cross symbols represent core

polarization contribution. The solid lines represent the sum of sd-shell and the core polarization contributions. The dotted
curves represent the core polarization contribution of ref. [1]. The dash-dotted curves represent the sum of sd-shell and the core
polarization contributions of ref. [1]. The data are taken from ref. [15] for 20Ne, refs. [16,17] for 24Mg and ref. [2] for 28Si.

28Si nucleus (4.62 MeV, JπT = 4+0) state

The modification of the C4 form factor by including the
core polarization effect upon the sd-shell model space cal-
culation for 20Ne and 24Mg is also noted in 28Si as shown
by the solid line in fig. 1(c) in comparison with the exper-
imental data extracted from ref. [2]. The predicted B(C4)
values for sd-shell model space with bare charges (0�ω) is
6.93×103 e2 · fm8 while the inclusion of the core polariza-
tion effect gives the value 28.7×103 e2 · fm8, in comparison
with the experimental result (27 ± 5) × 103 e2 · fm8 [18]
as given in table 1. The sd-shell component represents
24% of the total wave function. When core polarization
is included, the ph component represents 52% with 2�ω
excitations. The 4�ω contribution is 24% of the total wave

function. The core polarization contribution (2+4)�ω rep-
resents 76% of the total contribution.

32S nucleus (4.459) MeV, JπT = 4+0) state

The sd-shell model space calculation (0�ω) predicts the
value 12.5×103 e2 · fm8 for the B(C4) transition strength.
The C4 form factor according to this model is shown in
fig. 1(d) as a dashed curve. The core polarization calcu-
lations of the higher-excited configurations are shown by
the cross symbols. The inclusion of these configurations
enhances the form factors for q � 2.0 fm−1. No experi-
mental data are available for this nucleus. However, the
behavior of the form factor with the inclusion of higher
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configurations up to 4�ω is the same as the previous cases,
and gives the same results as those of the Tassie shape for
the core polarization transition density [1]. We expect that
this model will describe the data when they become avail-
able. The calculated transition strength B(C4) with the
inclusion of core polarization effects is 52.8× 103 e2 · fm8,
in comparison with 49.9× 103 e2 · fm8 extracted from the
effective charge model [1] as given in table 1. The decom-
position of the wave function into sd and ph components
are the same as in 28Si.

Conclusions

The sd-shell model space wave functions give just around
30% of the total observed C4 transitions strengths. The
inclusion of higher-excited configurations was essential in
order to resolve the shortfall. When this was done, by
means of core polarization calculation, most of the C4
strengths were accounted for. The inclusion of core polar-
ization gives a remarkable improvement in the form factors
for these nuclei both in the absolute strength and the mo-
mentum transfer dependence. The higher q (q > 2.0 fm−1)
values do not affected by core polarization effects, thus
agreed very well with the experimental data. The inter-
mediate states, and hence the B(C4) values are sensitive
to the residual interaction between particles out of the
model space. Same strength parameters of the MSDI are
used for all nuclei considered in this work which are consis-
tent with the measured form factors both in the absolute
strength and the q-dependence.
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